CHAPTER 6
DUCT SYSTEMS

SECTION MC 601
GENERAL

601.1 Scope. Duct systems used for the movement of air in air-conditioning, heating, ventilating and exhaust systems shall conform to the provisions of this chapter except as otherwise specified in Chapters 5 and 7.

Exception: Ducts discharging combustible material directly into any combustion chamber shall conform to the requirements of NFPA 82.

601.2 Air movement in corridors. Corridors shall not be used as a portion of direct supply, return, or exhaust air system serving adjoining areas. Air transfer opening(s) shall not be permitted in walls or in doors separating public corridors from adjoining areas.

Exceptions:
1. Where located within dwelling units, the use of corridors for conveying return air shall not be prohibited.
2. Where located within tenant spaces of 1,000 square feet (93 m²) or less in area, utilization of corridors for conveying return air is permitted.
3. Corridors in Group B office buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the New York City Building Code.
4. Air transfer openings serving toilet rooms, bathrooms, shower rooms, sink closets, and similar auxiliary spaces opening onto the public corridor.
5. Group I-3 detention and correctional occupancies with corridor separations of open construction (e.g., grating doors or grating partitions).
6. Air transfer in openings because of pressure differential in Group I-2 health care occupancies from corridors is permitted.
7. Where door clearances do not exceed those specified for fire doors in the New York City Building Code, air transfer caused by pressure differentials shall be permitted.
8. Use of egress corridors as part of an engineered smoke control system is permitted.

601.2.1 Corridor ceiling. Use of the space between the corridor ceiling and the floor or roof structure above as a return air plenum is permitted for one or more of the following conditions:
1. The corridor is not required to be of fire-resistance-rated construction;
2. The corridor is separated from the plenum by fire-resistance-rated construction;
3. The air-handling system serving the corridor is shut down upon activation of the air-handling unit smoke detectors required by this code;
4. The air-handling system serving the corridor is shut down upon detection of sprinkler waterflow where the building is equipped throughout with an automatic sprinkler system; or
5. The space between the corridor ceiling and the floor or roof structure above the corridor is used as a component of an approved engineered smoke control system.

601.3 Contamination prevention. Exhaust ducts under positive pressure, chimneys, and vents shall not extend into or pass through ducts or plenums.

SECTION MC 602
PLENUMS

602.1 General. Supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a finished ceiling or below the finished floor, attic spaces and mechanical equipment rooms. Plenums shall be limited to one fire area. Fuel-fired appliances shall not be installed within a plenum.

602.2 Construction. Plenum enclosures shall be constructed of materials permitted for the type of construction classification of the building. The temperature of air delivered to or through these plenums shall not exceed 250°F (121°C), except where used as part of an engineered smoke control system.

The use of gypsum boards to form plenums shall be limited to systems where the air temperatures do not exceed 125°F (52°C) and the building and mechanical system design conditions are such that the gypsum board surface temperature will be maintained above the air stream dew-point temperature. Air plenums formed by gypsum boards shall not be incorporated in air-handling systems utilizing evaporative coolers.

602.2.1 Materials exposed within plenums. Except as required by Sections 602.2.1.1 through 602.2.1.5, materials exposed within plenums shall be noncombustible or shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E 84.

Exceptions:
1. Rigid and flexible ducts and connectors shall conform to Section 603.
2. Duct coverings, linings, tape and connectors shall conform to Sections 603 and 604.
3. This section shall not apply to materials exposed within plenums in one- and two-family dwellings.
4. This section shall not apply to smoke detectors.
5. Combustible materials enclosed in approved gypsum board assemblies or enclosed in materials listed and labeled for such application.

602.2.1.1 Wiring. Combustible electrical or electronic wiring methods and materials, optical fiber cable, and optical fiber raceway exposed within a plenum shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread not greater than 5 feet (1524 mm) when tested in accordance with NFPA 262. Only type OFNP (plenum rated nonconductive optical fiber cable) shall be installed in plenum-rated optical fiber raceways. Wiring, cable, and raceways addressed in this section shall be listed and labeled as plenum rated and shall be installed in accordance with New York City Electrical Code.

602.2.1.2 Fire sprinkler piping. Plastic fire sprinkler piping exposed within a plenum shall be used only in wet pipe systems and shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread of not greater than 5 feet (1524 mm) when tested in accordance with UL 1887. Piping shall be listed and labeled.

602.2.1.3 Pneumatic tubing. Combustible pneumatic tubing exposed within a plenum shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread of not greater than 5 feet (1524 mm) when tested in accordance with UL 1820. Combustible pneumatic tubing shall be listed and labeled.

602.2.1.4 Combustible electrical equipment. Combustible electrical equipment exposed within a plenum shall have a peak rate of heat release not greater than 100 kilowatts, a peak optical density not greater than 0.50 and an average optical density not greater than 0.15 when tested in accordance with UL 2043. Combustible electrical equipment shall be listed and labeled.

602.2.1.5 Foam plastic insulation. Foam plastic insulation used as wall or ceiling finish in plenums shall exhibit a flame spread index of 75 or less and a smoke developed index of 450 or less when tested in accordance with ASTM E 84 and shall also comply with Section 602.1.5.1, 602.2.1.5.2 or 602.2.1.5.3.

602.2.1.5.1 Separation required. The foam plastic insulation shall be separated from the plenum by a thermal barrier complying with Section 2603.4 of the New York City Building Code.

602.2.1.5.2 Approval. The foam plastic insulation shall be approved based on tests conducted in accordance with Section 2603.8 of the New York City Building Code.

602.2.1.5.3 Covering. The foam plastic insulation shall be covered by corrosion-resistant steel having a base metal thickness of not less than 0.0160 inch (0.4 mm).

602.3 Stud cavity and joist space plenums. Stud wall cavities and the spaces between solid floor joists to be utilized as air plenums shall comply with the following conditions:

1. Such cavities or spaces shall not be utilized as a plenum for supply air.
2. Such cavities or spaces shall not be part of a required fire-resistance-rated assembly.
3. Stud wall cavities shall not convey air from more than one floor level.
4. Stud wall cavities and joist space plenums shall comply with the floor penetration protection requirements of the New York City Building Code.
5. Stud wall cavities and joist space plenums shall be isolated from adjacent concealed spaces by approved fireblocking as required in the New York City Building Code.

602.4 Flood hazard. For structures located in areas of special flood hazard, plenum spaces shall comply with Appendix G of the New York City Building Code.

602.5 Firestopping. Where required by the New York City Building Code through penetrations shall be firestopped in accordance with Section 712 of the New York City Building Code.

602.6 Materials. Materials used in the construction of a plenum shall be suitable for continuous exposure to the temperature and humidity conditions of the environmental air in the plenum.

SECTION MC 603

DUCT CONSTRUCTION AND INSTALLATION

603.1 General. An air distribution system shall be designed and installed to supply the required distribution of air. The installation of an air distribution system shall not affect the fire protection requirements specified in the New York City Building Code. Ducts shall be constructed, braced, reinforced and installed to provide structural strength and durability.

603.2 Duct sizing. Ducts installed within a single dwelling unit shall be sized in accordance with ACCA Manual D or other approved methods. Ducts installed within all other buildings shall be sized in accordance with the ASHRAE Handbook of Fundamentals or other equivalent computation procedure.

603.3 Duct classification. Ducts shall be classified based on the maximum operating pressure of the duct at pressures of positive or negative 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 or 10.0 inches of water column. The pressure classification of ducts shall equal or exceed the design pressure of the air distribution in which the ducts are utilized.

603.4 Metallic ducts. All metallic ducts shall be constructed as specified in the SMACNA HVAC Duct Construction Standards—Metal and Flexible.

Exception: Ducts installed within single dwelling units shall have a minimum thickness as specified in Table 603.4.
603.5 Nonmetallic ducts. Nonmetallic ducts shall be constructed with Class 0 or Class 1 duct material in accordance with UL 181. Fibrous duct construction shall conform to the SMACNA Fibrous Glass Duct Construction Standards or NAIMA Fibrous Glass Duct Construction Standards. The maximum air temperature within nonmetallic ducts shall not exceed 250°F (121°C).

603.6 Air ducts and air connectors. Air ducts, both metallic and nonmetallic, shall comply with Sections 603.6.1 and 603.6.1.1. Air connectors, both metallic and nonmetallic, shall comply with Sections 606.6.2 and 606.6.3.

603.6.1 Air ducts. Air ducts shall be permitted to be rigid or flexible and shall be constructed of materials that are reinforced and sealed to satisfy the requirements for the use of the air duct system, such as the supply air system, the return air system, and the variable volume/pressure air system.

603.6.1.1 Materials. All air duct materials shall be suitable for continuous exposure to the temperature and humidity conditions of the environmental air in the air duct. Air ducts shall be constructed of any of the following materials:

1. Iron, steel, aluminum, copper, concrete, masonry or clay tile.
2. Class 0 or Class 1 rigid or flexible air ducts tested in accordance with UL 181 and installed in conformance with the conditions of the listing.

Exceptions:

1. Class 0 or Class 1 rigid or flexible air duct shall not be used as a vertical air duct that is more than two stories in height.
2. Class 0 or Class 1 rigid or flexible air ducts shall not be used for air ducts containing air at temperatures in excess of 250°F (121°C).
3. Where the temperature of the conveyed air does not exceed 125°F (52°C) in normal service, negative pressure exhaust or return air ducts shall be permitted to be constructed of gypsum board having a maximum flame spread index/rating of 25 without evidence of continued progressive combustion and a maximum smoke developed index/rating of 50. Air ducts formed by gypsum boards shall have a surface temperature maintained above the air stream dew-point temperature, and shall not be used in air-handling systems utilizing evaporative coolers.

Exception: The maximum conveyed air temperature of 125°F (52°C) shall not apply to gypsum board material used for emergency smoke exhaust air ducts.

603.6.1.2 Installation. The materials, thickness, construction, and installation of ducts shall provide structural strength and durability in conformance with recognized good practice. Air ducts shall be considered to be in compliance with this requirement where constructed and installed in accordance with the New York City Building Code. Where no standard exists for the construction of air ducts, they shall be constructed to withstand both the positive and negative pressures of the system.

603.6.2 Air connectors. Air connectors are limited-use, flexible air ducts that are required to conform to other provisions applicable to air ducts and shall meet the following requirements:

1. Air connectors shall conform to the requirements for Class 0 or Class 1 connectors when tested and approved in accordance with UL 181.
2. Class 0 or Class 1 air connectors shall not be used for ducts containing air at temperatures in excess of 250°F (121°C).
3. Air connector runs shall not exceed 14 feet (4267 mm) in length.
4. Air connectors shall not penetrate any rated wall, partition, or shaft that is required to have a fire-resistance rating of 1 hour or more.
5. Air connectors shall not pass through floors.

603.6.3 Flexible air duct and air connector clearance. Flexible air ducts and air connectors shall be installed with a minimum clearance to an appliance as specified in the appliance manufacturer’s installation instructions.

603.7 Rigid duct penetrations. Duct system penetrations of walls, floors, ceilings and roofs and air transfer openings in such building components shall be protected as required by Section 607.

603.8 Underground ducts. Ducts shall be approved for underground installation. Metallic ducts not having an approved protective coating shall be completely encased in a minimum of 2 inches (51 mm) of concrete.

603.8.1 Slope. Ducts shall slope to allow drainage to a point provided with access.

603.8.2 Sealing. Ducts shall be sealed and secured prior to pouring the concrete encasement.

TABLE 603.4
DUCT CONSTRUCTION MINIMUM SHEET METAL THICKNESSES
FOR SINGLE DWELLING UNITS

<table>
<thead>
<tr>
<th>DUCT SIZE</th>
<th>GALVANIZED</th>
<th>APPROXIMATE ALUMINUM B & S GAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum thickness (inches)</td>
<td>Equivalent Galvanized Gage No.</td>
</tr>
<tr>
<td>Round ducts and enclosed Rectangular ducts</td>
<td>0.013</td>
<td>30</td>
</tr>
<tr>
<td>14” or less</td>
<td>0.016</td>
<td>28</td>
</tr>
<tr>
<td>Over 14”</td>
<td>0.016</td>
<td>28</td>
</tr>
<tr>
<td>Exposed rectangular ducts</td>
<td>0.016</td>
<td>28</td>
</tr>
<tr>
<td>Over 14”</td>
<td>0.019</td>
<td>26</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

The materials, thickness, construction, and installation of ducts shall provide structural strength and durability in conformance with recognized good practice.
603.8.3 Plastic ducts and fittings. Plastic ducts shall be constructed of PVC having a minimum pipe stiffness of 8 psi (55 kPa) at 5-percent deflection when tested in accordance with ASTM D 2412. Plastic duct fittings shall be constructed of either PVC or high-density polyethylene. Plastic duct and fittings shall be utilized in underground installations only. The maximum design temperature for systems utilizing plastic duct and fittings shall be 150°F (66°C).

603.9 Joints, seams and connections. All longitudinal and transverse joints, seams and connections in metallic and non-metallic ducts shall be constructed as specified in SMACNA HVAC Duct Construction Standards—Metal and Flexible and SMACNA Fibrous Glass Duct Construction Standards or NAIMA Fibrous Glass Duct Construction Standards. All longitudinal and transverse joints, seams and connections shall be sealed in accordance with the Energy Conservation Construction Code of New York State.

603.10 Supports. Ducts shall be supported with approved hangers at intervals not exceeding 10 feet (3048 mm) or by approved duct support systems designed in accordance with the New York City Building Code. Flexible and other factory-made ducts shall be supported in accordance with the manufacturer’s installation instructions. Ducts shall not be hung from or supported by suspended ceilings.

603.11 Furnace connections. Ducts connecting to a furnace shall have a clearance to combustibles in accordance with the furnace manufacturer’s installation instructions.

603.11.1 Air duct at heat sources. Where heat sources from electrical equipment, fossil fuel-burning equipment, or solar energy collection equipment are installed in air ducts, the installation shall avoid the creation of a fire hazard. Air ducts rated as Class 1 in accordance with UL 181, air duct coverings, and linings shall be interrupted at the immediate area of operation of such heat sources in order to meet the clearances specified in the equipment listing.

Exceptions:

1. Appliances listed for zero clearance from combustibles where installed with the conditions of their listings.

2. Insulation specifically suitable for the maximum temperature that reasonably can be anticipated on the duct surface shall be permitted to be installed at the immediate area of operation of such appliances.

603.12 Condensation. Provisions shall be made to prevent the formation of condensation on the exterior of any duct.

603.13 Flood hazard areas. For structures in areas of special flood hazard, ducts shall comply with Appendix G of the New York City Building Code.

603.14 Location. Ducts shall not be installed in or within 4 inches (102 mm) of the earth, except where such ducts comply with Section 603.8.

603.15 Mechanical protection. Ducts installed in locations where they are exposed to mechanical damage by vehicles or from other causes shall be protected by approved vehicle barriers as required by the New York City Building Code.

603.16 Weather protection. All ducts including linings, coverings and vibration isolation connectors installed on the exterior of the building shall be adequately protected against the elements.

603.17 Registers, grilles and diffusers. Duct registers, grilles and diffusers shall be installed in accordance with the manufacturer’s installation instructions. Balancing dampers or other means of supply air adjustment shall be provided in the branch ducts or at each individual duct register, grille or diffuser.

603.17.1 Floor registers. Floor registers shall resist, without structural failure, a 200-pound (90.8 kg) concentrated load on a 2-inch-diameter (51 mm) disc applied to the most critical area of the exposed face.

603.18 Vibration isolation connectors. Vibration isolation connectors in duct systems shall be made of an approved flame-retardant fabric or shall consist of sleeve joints with packing of approved material, each having a maximum flame spread index/rating of 25 and a maximum smoke-developed rating of 50. The fabric shall have a maximum length of 10 inches (254 mm) in the direction of airflow.

SECTION MC 604

INSULATION

604.1 General. Duct insulation shall conform to the requirements of Sections 604.2 through 604.13 and the Energy Conservation Construction Code of New York State.

604.2 Surface temperature. Ducts that operate at temperatures exceeding 120°F (49°C) shall have sufficient thermal insulation to limit the exposed surface temperature to 120°F (49°C).

604.3 Coverings and linings. Coverings and linings, including adhesives when used, shall have a flame spread index not more than 25 and a smoke-developed index not more than 50, when tested in accordance with ASTM E 84. Duct coverings and linings shall not flame, glow, smolder or smoke when tested in accordance with ASTM C 411 at the temperature to which they are exposed in service. The test temperature shall not fall below 250°F (121°C).

604.4 Foam plastic insulation. Foam plastic used as duct coverings and linings shall conform to the requirements of Section 604.

604.5 Appliance insulation. Listed and labeled appliances that are internally insulated shall be considered as conforming to the requirements of Section 604.

604.6 Penetration of assemblies. Duct coverings shall not penetrate a wall or floor required to have a fire-resistance rating or required to be fireblocked.

604.7 Identification. External duct insulation and factory-insulated flexible duct shall be legibly printed or identified at intervals not greater than 36 inches (914 mm) with the name of the manufacturer, the thermal resistance *R*-value at the specified installed thickness and the flame spread and smoke-developed indexes of the composite materials. All duct insulation product *R*-values shall be based on insulation only, excluding air films, vapor retarders or other duct components.
and shall be based on tested C-values at 75°F (24°C) mean temperature at the installed thickness, in accordance with recognized industry procedures. The installed thickness of duct insulation used to determine its R-values shall be determined as follows:

1. For duct board, duct liner and factory-made rigid ducts not normally subjected to compression, the nominal insulation thickness shall be used.
2. For duct wrap, the installed thickness shall be assumed to be 75 percent (25-percent compression) of nominal thickness.
3. For factory-made flexible air ducts, the installed thickness shall be determined by dividing the difference between the actual outside diameter and nominal inside diameter by two.

604.8 Lining installation. Linings shall be interrupted at the area of operation of a fire damper and at a minimum of 6 inches (152 mm) upstream of and 6 inches (152 mm) downstream of electric-resistance and fuel-burning heaters in a duct system. Metal nosings or sleeves shall be installed over exposed duct liner edges that face opposite the direction of airflow.

604.9 Thermal continuity. Where a duct liner has been interrupted, a duct covering of equal thermal performance shall be installed.

604.10 Service openings. Service openings shall not be concealed by duct coverings unless the exact location of the opening is properly identified.

604.11 Vapor retarders. Where ducts used for cooling are externally insulated, the insulation shall be covered with a vapor retarder having a maximum permeance of 0.05 perm $[2.87 \text{ ng/(Pa} \cdot \text{s} \cdot \text{m}^2)]$ or aluminum foil having a minimum thickness of 2 mils (0.051 mm). Insulations having a permeance of 0.05 perm $[2.87 \text{ ng/(Pa} \cdot \text{s} \cdot \text{m}^2)]$ or less shall not be required to be covered. All joints and seams shall be sealed to maintain the continuity of the vapor retarder.

604.12 Weatherproof barriers. Insulated exterior ducts shall be protected with an approved weatherproof barrier.

604.13 Internal insulation. Materials used as internal insulation and exposed to the airstream in ducts shall be shown to be durable when tested in accordance with UL 181. Exposed internal insulation that is not impermeable to water shall not be used to line ducts or plenums from the exit of a cooling coil to the downstream end of the drain pan.

SECTION MC 605

AIR FILTERS

605.1 General. Heating and air-conditioning systems of the central type shall be provided with approved air filters. Filters shall be installed in the return air system, upstream from any heat exchanger or coil, in an approved convenient location. Liquid adhesive coatings used on filters shall have a flash point not lower than 325°F (163°C).

605.2 Standards. Media-type and electrostatic-type air filters shall be listed and labeled. Media-type air filters shall comply with UL 900. High-efficiency particulate air filters shall comply with UL 586. Electrostatic-type air filters shall comply with UL 867. Air filters utilized within dwelling units shall be designed for the intended application and shall not be required to be listed and labeled.

605.3 Airflow over the filter. Ducts shall be constructed to allow an even distribution of air over the entire filter.

605.4 Liquid adhesive tanks. Tanks for liquid adhesives, into which removable filters are dipped, shall be located either outside the building or, if such a location is not available, in a separate fire-resistant room and stored in accordance with NFPA 30. Such tanks shall be metal, equipped with tight-fitting covers and shall be kept tightly covered when not in actual use.

605.5 Filter maintenance. All air filters shall be kept free of excess dust and combustible material. Unit filters shall be renewed or cleaned when the resistance to airflow has increased to two times the original resistance or when the resistance has reached a value of the recommended replacement by the manufacturer. A permanently installed draft gauge shall be provided for this purpose. Where the filters are of the automatic liquid adhesive type, sludge shall be removed from the liquid adhesive reservoir regularly.

SECTION MC 606

SMOKE DETECTION SYSTEMS CONTROL

606.1 Controls required. Air distribution systems shall be equipped with smoke detectors listed and labeled for installation in air distribution systems, as required by this section.

606.2 Where required. Smoke detectors shall be installed where indicated in Sections 606.2.1 through 606.2.4.

Exception: Smoke detectors shall not be required where air distribution systems are incapable of spreading smoke beyond the enclosing walls, floors and ceilings of the room or space in which the smoke is generated.

606.2.1 Return air systems. Smoke detectors shall be installed in return air systems with a design capacity greater than 2,000 cfm (0.9 m³/s), in the return air duct or plenum upstream of any filters, exhaust air connections, outdoor air connections, or decontamination equipment and appliances.

Exception: Smoke detectors are not required in the return air system where all portions of the building served by the air distribution system are protected by area smoke detectors connected to a fire alarm system in accordance with the New York City Fire Code. The area smoke detection system shall comply with Section 606.4.

606.2.2 Common supply and return air systems. Where multiple air-handling systems share common supply or return air ducts or plenums with a combined design capacity greater than 2,000 cfm (0.9 m³/s), the return air system shall be provided with smoke detectors in accordance with Section 606.2.1.

Exception: Individual smoke detectors shall not be required for each fan-powered terminal unit, provided that such units do not have an individual design capacity
DUCT SYSTEMS

greater than 2,000 cfm (0.9 m³/s) and will be shut down by activation of one of the following:

1. Smoke detectors required by Sections 606.2.1 and 606.2.3.
2. An approved area smoke detector system located in the return air plenum serving such units.
3. An area smoke detector system as prescribed in the exception to Section 606.2.1.

In all cases, the smoke detectors shall comply with Sections 606.4 and 606.4.1.

606.2.3 Return air risers. Where return air risers serve two or more stories and serve any portion of a return air system having a design capacity greater than 15,000 cfm (7.1 m³/s), smoke detectors shall be installed at each story. Such smoke detectors shall be located up stream of the connection between the return air riser and any air ducts or plenums.

606.2.4 Supply air systems. Smoke detectors listed for use in air distribution systems shall be installed downstream of the air filters and ahead of any branch connections in air supply systems having a capacity greater than 2,000 cfm (0.9 m³/s).

606.3 Installation. Smoke detectors required by this section shall be installed in accordance with the New York City Electrical Code. The required smoke detectors shall be installed to monitor the entire airflow conveyed by the system including supply air, return air and exhaust or relief air. Access shall be provided to smoke detectors for inspection and maintenance.

606.4 Controls operation. Upon activation, the smoke detectors shall automatically shut down their respective air distribution system(s). Air distribution systems that are part of a smoke control system shall switch to the smoke control mode upon activation of a detector.

606.4.1 Supervision. The duct smoke detectors shall be connected to a fire alarm system. The actuation of a duct smoke detector shall activate a visible and audible supervisory signal at a constantly attended location.

Exceptions:

1. The supervisory signal at a constantly attended location is not required where the duct smoke detector activates the building’s alarm-indicating appliances.
2. In occupancies not required to be equipped with a fire alarm system, actuation of either area or duct smoke detector shall activate a visible and an audible signal in an approved location. Additionally, duct smoke detector trouble conditions shall activate a visible or audible signal in an approved location and shall be identified as air duct detector trouble.

606.4.2 Fan shutdown. When any building or floor is provided with an air system utilizing recirculated air and is protected by an automatic sprinkler system or an automatic fire alarm system, provisions shall be made to automatically stop the fans serving the affected area when the sprinkler system or fire alarm system are installed in the area, it shall be required to have only one of these systems arranged to stop the fans.

Exceptions:

1. Activation of a manual pull station shall not be required to automatically stop the fans.
2. Systems having a capacity of 2,000 cfm (0.2 m³/s) or less or serving not more than one floor.

606.4.3 Manual restart of fans after automatic fire detecting device or fire alarm system shut down. Fans or fan systems which have been automatically shut down on activation of an automatic fire detecting device or fire alarm system shall be arranged and equipped so that they do not automatically restart when either the automatic fire detecting device or fire alarm system is reset. The manual means of restarting the fans or fan systems shall function independently from the manual resetting of either the automatic fire detecting device or fire alarm system.

SECTION MC 607

DUCTS AND AIR TRANSFER OPENINGS

607.1 General. The provisions of this section shall govern the protection of duct penetrations and air transfer openings in fire-resistance-rated assemblies.

607.1.1 Ducts and air transfer openings without dampers. Ducts and air transfer openings that penetrate fire-resistance-rated assemblies and are not required to have dampers by this section shall comply with the requirements of Section 712 of the New York City Building Code.

607.2 Installation. Fire dampers, smoke dampers, combination fire/smoke dampers and ceiling dampers located within air distribution and smoke control systems shall be installed in accordance with the requirements of this section, and the manufacturer’s installation instructions and listing.

607.2.1 Smoke control system. Where the installation of a fire damper will interfere with the operation of a required smoke control system in accordance with Section 513, approved alternative protection shall be utilized.

607.2.1.1 Remote operation. Combination fire and smoke dampers shall be operable by remote controls where necessary for smoke removal. Such dampers shall have provisions that allow them to reclose automatically upon reaching the damper’s maximum degradation test temperature in accordance with UL 555S.

607.2.2 Hazardous exhaust ducts. Fire dampers for hazardous exhaust duct systems shall comply with Section 510.

607.2.3 Supply air systems. Smoke dampers listed for use in air distribution systems shall be installed both upstream and downstream of filters and ahead of any branch connections in supply air-handling apparatus and systems having a capacity equal to or greater than 15,000 cfm (7.1 m³/s).

Exceptions:

1. Where the air-handling unit is located on the floor that it serves and serves only that floor.
2. Where the air-handling unit is located on the roof and serves only the floor immediately below the roof.

3. Existing buildings using only UL 90D Class I filters shall be exempt from this subdivision provided the control system is arranged to shut down the fresh air intake, return air, and exhaust air dampers, and fan shutdown and smoke detection is provided in accordance with Section 606.

607.3 Damper testing and ratings. Dampers shall be listed and bear the label of an approved testing agency indicating compliance with the standards in this section. Fire dampers shall comply with the requirements of UL 555. Only fire dampers labeled for use in dynamic systems shall be installed in heating, ventilation and air-conditioning systems designed to operate with fans on during a fire. Smoke dampers shall comply with the requirements of UL 555S. Combination fire/smoke dampers shall comply with the requirements of both UL 555 and UL 555S. Ceiling radiation dampers shall comply with the requirements of UL 555C.

607.3.1 Fire protection rating. Fire dampers shall have the minimum fire protection rating specified in Table 607.3.1 for the type of penetration.

<table>
<thead>
<tr>
<th>TABLE 607.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE DAMPER RATING</td>
</tr>
<tr>
<td>TYPE OF PENETRATION</td>
</tr>
<tr>
<td>Less than 3-hour fire-resistance-rated assemblies</td>
</tr>
<tr>
<td>3-hour or greater fire-resistance-rated assemblies</td>
</tr>
</tbody>
</table>

607.3.1.1 Fire damper actuating device. The fire damper actuating device shall meet one of the following requirements:

1. The operating temperature shall be approximately 50°F (27.8°C) above the normal temperature within the duct system, but not less than 160°F (71°C).

2. The operating temperature shall be not more than 286°F (141°C) where located in a smoke control system complying with Section 513.

3. Where a combination fire/smoke damper is located in a smoke control system complying with Section 513, the operating temperature rating shall be approximately 50°F (27.8°C) above the maximum smoke control system designed operating temperature, or a maximum temperature of 350°F (177°C). The temperature shall not exceed the UL 555S degradation test temperature rating for a combination fire/smoke damper.

607.3.2 Smoke damper ratings. Smoke damper leakage ratings shall not be less than Class II. Elevated temperature ratings shall be not less than 250°F (121°C).

607.3.2.1 Smoke damper actuation methods. The smoke damper shall close upon actuation of a listed smoke detector or detectors installed in accordance with Section 606 of this code and Sections 907.10 and 907.11 of the New York City Building Code and one of the following methods, as applicable:

1. Where a damper is installed within a duct, a smoke detector shall be installed in the duct within 5 feet (1524 mm) of the damper with no air outlets or inlets between the detector and the damper. The detector shall be listed for the air velocity, temperature and humidity anticipated at the point where it is installed. Other than in mechanical smoke control systems, dampers shall be closed upon fan shutdown where local smoke detectors require a minimum velocity to operate.

2. Where a damper is installed above smoke barrier doors in a smoke barrier, a spot-type detector listed for releasing service shall be installed on either side of the smoke barrier door opening.

3. Where a damper is installed within an unducted opening in a wall, a spot-type detector listed for releasing service shall be installed within 5 feet (1524 mm) horizontally of the damper.

4. Where a damper is installed in a corridor wall, the damper shall be permitted to be controlled by a smoke detection system installed in the corridor.

5. Where a total-coverage smoke detector system is provided within areas served by an HVAC system, dampers shall be permitted to be controlled by the smoke detection system.

6. Smoke dampers that are part of an engineered smoke control system shall be capable of being positioned manually from a command station. Such positioning devices shall be provided for supply and return/exhaust dampers grouped by floor and by type. Damper switch positions shall indicate whether the related dampers are commanded to be either open or closed. Smoke damper positioning switches shall be located at the Fire Command Station, or in a Mechanical Control Center in buildings without a Fire Command Station.

607.4 Access and identification. Fire and smoke dampers shall be provided with an approved means of access, large enough to permit inspection and maintenance of the damper and its operating parts. The access shall not affect the integrity of fire-resistance-rated assemblies. The access openings shall not reduce the fire-resistance rating of the assembly. Access points shall be permanently identified on the exterior by a label having letters not less than 0.5 inch (12.7 mm) in height reading: SMOKE DAMPER or FIRE DAMPER, followed by an identification marking that is unique to the damper accessed. Access doors in ducts shall be tight fitting and suitable for the required duct construction.

607.5 Where required. Fire dampers, smoke dampers, combination fire/smoke dampers and ceiling radiation dampers shall be provided at the locations prescribed in this section. Where
an assembly is required to have both fire dampers and smoke dampers, combination fire/smoke dampers or a fire damper and a smoke damper shall be required.

Exceptions:

1. Smoke dampers shall not be required on air systems other than where necessary for the proper function of that system where the system is designed specifically to:
 1.1. Function as an engineered smoke control system, including the provision of continuous air movement with the air-handling system; or
 1.2. Provide air to other areas of the building during a fire emergency; or
 1.3. Provide pressure differentials during a fire emergency.
2. Smoke dampers shall not be required to be located within a prescribed distance of a fire-rated enclosure where isolation smoke dampers are used in air-handling equipment (refer to Section 607.2.3).
3. Smoke dampers shall not be required in ducts where the air continues to move and the air-handling system installed is arranged to prevent recirculation of exhaust or return air under fire emergency conditions.

607.5.1 Fire walls. Ducts and air transfer openings permitted in firewalls in accordance with Section 705.11 of the New York City Building Code shall be protected with approved fire dampers and smoke dampers installed in accordance with their listing.

607.5.2 Fire barriers. Duct penetrations and air transfer openings in fire barriers shall be protected with approved fire dampers installed in accordance with their listing. In addition, smoke dampers shall be installed in penetrations of public corridor walls in accordance with Section 607.5.2.1.

Exceptions: Fire dampers are not required at penetrations of fire barriers where any of the following apply:

1. Penetrations are tested in accordance with ASTM E119 as part of the fire-resistance-rated assembly.
2. Where permitted under Section 513 and ducts are part of an engineered smoke control system.
3. Such walls are penetrated by ducted HVAC systems, have a required fire resistance rating of 1 hour or less, are in areas of other than Group H and are in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 of the New York City Building Code. For the purposes of this exception, a ducted HVAC system shall be a duct system for the structure’s HVAC system. Such a duct system shall be constructed of sheet metal not less than 26-Gage (0.0217-inch) [0.55-mm] thickness and shall be continuous from the air-handling appliance or equipment to the air outlet and inlet terminals.

607.5.2.1 Public corridors. A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a public corridor wall constructed as a fire barrier.

Exceptions:

1. Smoke dampers are not required where the building is equipped throughout with an approved smoke control system in accordance with Section 909, and smoke dampers are not necessary for the operation and control of the system.
2. Smoke dampers are not required in corridor penetrations where the duct is constructed of steel not less than 0.019-inch (0.48 mm) in thickness and there are no openings serving the corridor.
3. Smoke dampers are not required in corridor penetrations in Group R-2 buildings and spaces.

607.5.3 Fire partitions. Duct penetrations in fire partitions shall be protected with approved fire dampers installed in accordance with their listing.

Exceptions: In occupancies other than Group H, fire dampers are not required where any of the following apply:

1. The partitions are tenant separation and corridor walls in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 of the New York City Building Code and the duct is protected as a through penetration in accordance with the New York City Building Code.
2. The duct system is constructed of approved materials in accordance with this code and the duct penetrating the wall meets all of the following minimum requirements.
 2.1. The duct shall not exceed 100 square inches (0.06 m²).
 2.2. The duct shall be constructed of steel a minimum of 0.0217-inch (0.55 mm) in thickness.
 2.3. The duct shall not have openings that communicate the corridor with adjacent spaces or rooms.
 2.4. The duct shall be installed above a ceiling.
 2.5. The duct shall not terminate at a wall register in the fire-resistance-rated wall.
 2.6. A minimum 12-inch-long (304.8 mm) by 0.060-inch-thick (1.52 mm) steel sleeve shall be centered in each duct opening. The sleeve shall be secured to both sides of the wall and all four sides of the sleeve with minimum 1/8-inch by 1/2-inch by 0.060-inch (38 mm by 38 mm by 1.52 mm) steel retaining angles. The retaining angles...
shall be secured to the sleeve and the wall with No. 10 (M5) screws. The annular space between the steel sleeve and the wall opening shall be filled with rock (mineral) wool batting or approved equivalent on all sides.

607.5.4 Smoke barriers. A listed smoke damper designed to resist the passage of smoke shall be provided at each point where a duct or an air transfer opening penetrates a smoke barrier wall enclosure required to have smoke and draft control doors in accordance with the New York City Building Code. Smoke dampers and smoke damper actuation methods shall comply with Section 607.5.4.1.

Exception: Smoke dampers are not required in smoke barrier penetrations where the openings in ducts are limited to a single smoke compartment and the ducts are constructed of steel.

607.5.4.1 Smoke damper. The smoke damper shall close upon actuation of a listed smoke detector or detectors installed in accordance with the New York City Building Code and Section 607.3.2.1.

607.5.5 Shaft enclosures. Ducts and air transfer openings shall not penetrate a shaft serving as an exit enclosure except as permitted by Section 1019.1.2 of the New York City Building Code.

607.5.5.1 Penetrations of shaft enclosures. Shaft enclosures that are permitted to be penetrated by ducts and air transfer openings shall be protected with approved fire and smoke dampers installed in accordance with their listing.

Exceptions:

1. Fire dampers are not required at penetrations of shafts where:
 1.1. Steel exhaust subducts extend at least 22 inches (559 mm) vertically in exhaust shafts provided there is a continuous airflow upward to the outside, or
 1.2. Penetrations are tested in accordance with ASTM E 119 as part of the fire-resistance-rated assembly, or
 1.3. Ducts are used as part of an approved smoke control system designed and installed in accordance with Section 513 of this code, and where the fire damper will interfere with the operation of the smoke control system, or
 1.4. The penetrations are in parking garage exhaust or supply shafts that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

2. In Group B occupancies, equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the New York City Building Code, smoke dampers are not required at penetrations of shafts where:
 2.1. Bathroom and toilet room exhaust openings with steel exhaust subducts, having a wall thickness of at least 0.019 inch (0.48 mm) extend at least 22 inches (559 mm) vertically and where the exhaust fan at the upper terminus is powered continuously in accordance with the provisions of Section 909.11 of the New York City Building Code, and maintains airflow upward to the outside, or
 2.2. Ducts are used as part of an approved smoke control system designed and installed in accordance with Section 909 of the New York City Building Code, and where the smoke damper will interfere with the operation of the smoke control system.

3. Smoke dampers are not required at penetration of exhaust or supply shafts in parking garages that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

4. Smoke dampers shall not be required at a shaft where the shaft is acting as an extension of the mechanical equipment room that it serves and the shaft and mechanical equipment room maintain fire and smoke separation required by the greater of the two spaces from the occupied portions of the building and meet the requirements of Section 707.11 of the New York City Building Code.

5. Smoke dampers shall not be required to be located within a prescribed distance of a fire-rated enclosure where isolation smoke dampers are used in air-handling equipment.

6. Smoke dampers shall not be required in ducts where the air continues to move and the air-handling system installed is arranged to prevent recirculation of exhaust or return air under fire emergency conditions.

607.5.5.2 Limitations. Shafts that constitute air ducts or that enclose air ducts used for the movement of environmental air shall not enclose:

1. Exhaust ducts used for the removal of smoke and grease-laden vapors from cooking equipment;
2. Ducts used for removal of flammable vapors;
3. Ducts used for moving, conveying, or transporting stock, vapor or dust;
4. Ducts used for the removal of nonflammable corrosive fumes and vapors;
5. Refuse and linen chutes; or
6. Piping.

Exception: Shafts that constitute air ducts or that enclose air ducts used for the movement of environmental air may enclose noncombustible piping conveying water or other nonhazardous or nontoxic materials.

607.6 Horizontal assemblies
Penetrations by air ducts of a floor, roof/ceiling assembly or the ceiling membrane of a shaft enclosure assembly shall be protected by a shaft enclosure that complies with the New York City Building Code or shall comply with this section.

607.6.1 Through penetrations
In occupancies other than Groups I-2 and I-3, a duct and air transfer opening system constructed of approved materials in accordance with this code that penetrates a fire-resistance-rated floor/ceiling assembly that connects not more than two stories is permitted without shaft enclosure protection provided a fire damper is installed at the floor line and the penetration is firestopped.

Exception: A duct serving a dwelling unit is permitted to penetrate three floors or less without a fire damper at each floor provided it meets all of the following requirements:

1. The duct shall be contained and located within the cavity of a wall and shall be constructed of steel not less than 0.019 inch (0.48 mm) (26 gauge) in thickness.
2. The duct shall open into only one dwelling unit and the duct system shall be continuous from the unit to the exterior of the building.
3. The duct shall not exceed 5-inch (127 mm) nominal diameter and the total area of such ducts shall not exceed 100 square inches (64516 mm²) for any 100 square feet (9.3 m²) of the floor area.
4. The annular space around the duct is protected with materials that prevent the passage of flame and hot gases sufficient to ignite cotton waste where subjected to ASTM E 119 time-temperature conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated.
5. Grille openings located in a ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly shall be protected with a ceiling radiation damper in accordance with Section 607.6.2.

607.6.2 Membrane penetrations
Where duct systems constructed of approved materials in accordance with this code penetrate a ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly, shaft enclosure protection is not required provided an approved ceiling radiation damper and firestopping is installed at the ceiling line. Ceiling radiation dampers shall be installed in accordance with UL 555C and constructed in accordance with the details listed in a fire-resistance-rated assembly or shall be labeled to function as a heat barrier for air-handling outlet/inlet penetrations in the ceiling of a fire-resistance-rated assembly. Ceiling radiation dampers shall not be required where ASTM E 119 fire tests have shown that ceiling radiation dampers are not necessary in order to maintain the fire-resistance rating of the assembly. Ceiling radiation damper shall not be required where exhaust duct penetrations are protected in accordance with Section 712.4.2 of the New York City Building Code and the exhaust ducts are located within the cavity of a wall, and do not pass through another dwelling unit or tenant space.

607.6.3 Nonfire-resistance-rated assemblies
Duct systems constructed of approved materials in accordance with this code that penetrate nonfire-resistance-rated floor/ceiling assemblies that connect not more than two stories are permitted without shaft enclosure protection provided the annular space between the assembly and the penetrating duct is filled with an approved noncombustible material to resist the free passage of flame and the products of combustion. Duct systems constructed of approved materials in accordance with this code that penetrate nonrated floor assemblies that connect not more than three stories are permitted without shaft enclosure protection provided the annular space between the assembly and the penetrating duct is filled with an approved noncombustible material to resist the free passage of flame and the products of combustion, and a fire damper is installed at each floor line.

Exception: Fire dampers are not required in ducts within individual residential dwelling units.

607.7 Flexible ducts and air connectors
Flexible ducts and air connectors shall not pass through any fire-resistance-rated assembly.

SECTION MC 608
AIR OUTLETS AND AIR INLETS

608.1 Air outlets
Air outlets shall comply with Sections 608.1.1 through 608.1.3.

608.1.1 General
Air supplied to any space shall not contain flammable vapors, flyings, or dust in quantities and concentrations that would introduce a hazardous condition.

608.1.2 Construction of air outlets
Air outlets shall be constructed of noncombustible material or a material that has a maximum smoke-developed index/rating of 50 and a maximum flame spread index/rating of 25.

608.1.3 Location of air outlets
The location of air outlets shall comply with the following requirements:

1. Air outlets shall be located at least 3 inches (76 mm) above the floor.

Exception: Air outlets may be located less than 3 inches (76 mm) above the floor where provisions...
have been made to prevent dirt and dust accumulations from entering the system.

2. Where located less than 7 feet (2134 mm) above the floor, outlet openings shall be protected by a grille or screen having openings through which a \(\frac{1}{2}\) -inch (12.7 mm) sphere cannot pass.

3. Grilles may be located in floors provided they are installed so that they may be removed for cleaning purposes and provided they are constructed as follows:

3.1. Grilles up to 3 square feet (0.2787 m\(^2\)) in gross area shall be designed to support a concentrated live load of 250 pounds (114 kg) on any 4 square inches (2580 mm\(^2\)) of surface.

3.2. Grilles over 3 square feet (0.2787 m\(^2\)) in gross area shall be designed to support the same loads as the floor in the area where used.

3.3. If located where they may be walked upon, the opening in grilles shall reject a \(\frac{1}{2}\)-inch (12.7 mm) sphere.

SECTION MC 609
SERVICE OPENINGS

609.1 General. Horizontal air ducts and plenums shall be provided with service openings to facilitate the removal of accumulations of dust and combustible materials. Service openings shall be located at approximately 20-foot (6096 mm) intervals along the air duct and at the base of each vertical riser.

Exceptions:

1. Removable air outlet or air inlet devices of adequate size shall be permitted in lieu of service openings.

2. Service openings shall not be required in supply ducts where the supply air has previously passed through an air filter, air cleaner, or water spray. Such air filters and air cleaners shall be properly maintained and replaced when needed.

3. Service openings shall not be required where all of the following conditions exist:

3.1. The occupancy has no process producing combustible material such as dust, lint, or greasy vapors. Such occupancies include banks, office buildings, houses of worship, hotels, and health care facilities (but not kitchens, laundries, and manufacturing portions of such facilities).

3.2. The air inlets are at least 7 feet (2134 mm) above the floor or are protected by corrosion-resistant metal screens of at least 14 mesh (0.07 inches) (1.8 mm) that are installed at the inlets so that they cannot draw papers, refuse, or other combustible solids into the return air duct.

3.3. The minimum design velocity in the return duct for the particular occupancy is 1000 feet/minute (5.080 m/s).